banner
  • Rapid CNC Prototyping and Parts machining FAQs Mar 18, 2025
    1. What are the advantages of CNC prototypes over 3D printing? Answer: CNC prototypes are generally superior to 3D printing in terms of accuracy and material selection. CNC machining can process a variety of materials such as metals and plastics, and has a high surface quality, which is more suitable for functional testing and final product production. Understanding the Impact of Early Prototyping Involvement in Product Design The early involvement of prototyping experts plays a critical role in the product design process. By bringing these experts into the initial stages, design teams can leverage their skills to foresee and mitigate potential issues that could arise during manufacturing. Key Benefits of Early Expert Involvement: Enhanced Collaboration: By integrating prototyping experts early, design and manufacturing teams work together seamlessly, ensuring a unified approach throughout the development process. Identifying Challenges Early: These experts contribute valuable insights that help in pinpointing possible design hurdles long before they escalate into costly manufacturing issues. Optimizing for Manufacturability: With their vast experience, prototyping professionals can suggest modifications that make the design both easier and more cost-effective to produce. Performance Refinement: Early input ensures that the product not only meets but exceeds performance expectations, thanks to iterative testing and refinement guided by prototyping expertise. In summary, tapping into the knowledge of prototyping experts at the start of the design phase results in a smoother transition from concept to final product, with enhanced efficiency and quality. 2. How long is the processing cycle of CNC prototypes usually? Answer: The processing cycle of CNC prototypes depends on the complexity of the design and the selected materials. Simple designs may be completed in 1-3 days, while complex prototypes may take 5-7 days or longer. 3. How CNC Prototyping Cuts Down on Production Costs CNC Prototyping plays a crucial role in minimizing overall production expenses by tackling design and manufacturing challenges upfront. Here’s how: Early Identification of Flaws: By creating a prototype, potential issues in the design and production processes are identified before they escalate. This allows for quick adjustments, ensuring that costly mistakes don't make their way into mass production. Efficiency in Iterations: Instead of undergoing a complete production run to test a design, CNC Prototyping allows for iterative testing and refinement. This process saves significant expenditure associated with large-scale changes once production has begun. Material and Process Optimization: Through CNC Prototyping, businesses can experiment with various materials and methods to determine the most cost-effective options without committing substantial resources. This experimentation leads to optimized production processes, minimizing waste and reducing costs. Risk Mitigation: By simulating real-world usage and conditions during CNC Prototyping, unforeseen issues can be addressed, reducing the likelihood of expensive recalls or product failures after launch. Incorporating CNC Prototyping into the development phase can lead to strategic cost-saving opportunities, ensuring a smoother transition from concept to market-ready product. 4. How to ensure the dimensional accuracy of CNC prototypes? Answer: Dimensional accuracy is guaranteed by precise CNC equipment, strict control of processing parameters, and post-testing. Using high-quality tools and cutters is also very critical. 5. What are the most commonly used materials in CNC prototype manufacturing? Answer: Common materials include aluminum, copper, stainless steel, ABS plastic and nylon. These materials are widely used due to their excellent mechanical properties, processing and surface treatment effects. 6. Can CNC prototypes be produced in small batches? Answer: Yes, CNC prototyping is very suitable for small batch production, especially when you need to quickly verify the design or market testing. Its flexibility and precision make it an ideal choice. 7. Is CNC prototype suitable for complex geometries? Answer: CNC machining can handle very complex geometries, especially when using 5-axis CNC machines. However, some extremely complex designs may require special fixtures or step-by-step processing. 8. What are the surface treatment options for CNC prototypes? Answer: Common surface treatments include sandblasting, anodizing, electroplating, and polishing. These treatments can improve corrosion resistance, hardness, or achieve specific aesthetic effects. 9. What industries are CNC prototypes suitable for? Answer: CNC prototypes are widely used in many industries such as automotive parts, aerospace parts, medical devices parts, consumer electronics parts, industrial equipment parts, etc., and are particularly suitable for application scenarios that require high precision and functional verification. 10. How to choose the right CNC prototype service provider? Answer: When selecting a supplier, you should consider its equipment capabilities, technical experience, delivery cycle, quality control system, and customer feedback. It is also important to understand whether it can meet specific design and material requirements. What Are the Advantages of In-House Machining and Fabrication Capabilities?  In-house machining and fabrication capabilities offer a range of advantages that set companies apart from those who outsource these services: Speed and Efficiency: By handling machining and fabrication tasks internally, companies can significantly reduce lead times. This efficiency means projects move from concept to completion much faster than if third-party services were involved. Enhanced Quality Control: With every step of the process taking place under one roof, there's a greater ability to monitor and maintain quality standards. This control minimizes errors and ensures that each product meets high-performance criteria. Cost-Effectiveness: Internal capabilities eliminate the need for outside contractors, reducing overall project costs. Savings can then be passed on to customers, making the service more competitive in the market. Flexibility with Prototyping: Quick adjustments can be made during the prototyping phase, allowing for rapid iterations and improvements. This agility is crucial for meeting client specifications and adapting to changes swiftly. Confidentiality and Intellectual Property Protection: Conducting all operations internally reduces the risk of intellectual property theft or leaks, keeping your designs and innovations secure. By integrating these capabilities in-house, companies enhance their overall operational effectiveness, delivering superior products with greater speed and reliability. 11. Why is Prototyping Considered a Critical Phase in Product Development? Prototyping stands as a vital step in the journey of product development due to its multifaceted benefits. At its core, prototyping involves crafting an initial model of a product. This foundational step allows teams to explore and test various aspects, such as functionality and design, before scaling up to full production. Benefits of Prototyping: Spotting Design Flaws Early: By experimenting with a prototype, potential issues in both design and functionality can be identified before mass production begins. This proactive approach helps avoid costly revisions down the line. Enhancing Product Performance: Iterative testing of a prototype ensures that design tweaks and enhancements can be made efficiently, ultimately leading to a product that performs well under real-world conditions. Cost Efficiency: Early-stage adjustments save significant time and resources. By catching issues upfront, companies can sidestep expensive production missteps, optimizing their investment. Meeting Customer Expectations: Prototypes offer a tangible way to gauge whether a product will align with consumer needs and quality benchmarks, thus ensuring higher customer satisfaction upon release. In sum, prototyping is indispensable, allowing teams to refine and perfect a product, elevating it to meet both industry standards and consumer demands effectively.
  • What materials are best for custom robot parts? Mar 25, 2025
    Metals: Aluminum, stainless steel, and titanium alloys are ideal materials for custom robot parts because they are lightweight but strong, making them ideal for parts that need to withstand heavy use and frequent movement. Copper, brass, and bronze have excellent electrical conductivity, making them ideal for parts that require electrical current or wiring.   Plastics: ABS, polycarbonate (PC) and acrylonitrile  stybutadienerene (ABS) are all highly durable materials that can withstand extreme temperatures and harsh environments, making them suitable for robotic applications. High density polyethylene (HDPE), polypropylene (PP), and nylon offer flexibility while remaining light, which makes them ideal for creating custom robotic parts with complex shapes or complex designs.                
  • From prototyping to production – how 3D printing is evolving Printing production-run volumes of parts is becoming an increasingly viable solution. Apr 08, 2025
    While the use of 3D printing for rapid prototyping has been developing since the late 80s and is now extremely common, the industry has also steadily continued its move towards production applications, including low-volume production, mass customization, and serial production. “We’re seeing more and more large-quantity orders and repeat orders,” says Protolabs’ Robin Brockötter. “There’s definitely a trend towards full-scale production.” This is influenced by many and diverse factors, including a preference for more local production amid global supply-chain disruptions (9% of our survey respondents said low susceptibility to supply chain issues is the main reason why they opted for 3D printing over other manufacturing methods) and sustainability concerns. In 2023, 21% of our survey respondents used 3D printing for end-use parts—up from 20% in 2022—and 4% used it for aesthetic parts. When it comes to replacing injection-molding manufacturing with 3D printing processes, it’s all about order volumes: for low-volume production, 3D printing is often the more cost-effective solution, while at higher volumes, injection molding becomes more economical. However, the point where that happens— the ‘sweet spot’ of maximum viable 3D printing order volume—is shifting. “3D printing can now start producing more and more parts before injection molding becomes cheaper,” says Brockötter. Results from our 2024 survey support this. In our 2023 survey, doubts around 3D printing as a choice for “production volume and scale” led 47% of respondents to opt for different manufacturing technologies, but this year that number has dropped to 45%, showing increased confidence in scaling with 3D printing. And throughout the years, our surveys also show a steady growth in production-run volumes: respondents saying they printed more than 10 parts rose from 36% in 2020, to 49% in 2021 and to 76% in 2022. While this figure has stayed the same for 2023, marking stabilization, the percentage of respondents saying they printed more than 1000 parts rose from 4.7% in 2022 to 6.2% in 2023. Beyond the actual printing process, there are many other aspects that influence the scalability of using 3D printing technologies for production, from software, design, and materials to post-processing and finalizing tasks such as cleaning, secondary finishing, spot removal, stress relief, and inspections. As the 3D printing ecosystem continues to mature, a support system of companies providing many of these services is springing up around 3D printing businesses, simplifying production processes. This in turn will encourage the uptake of these processes. In addition, increasing familiarity with DFAM—the additive design space—will mean engineers and designers will become more proficient at navigating design limitations and opportunities and leveraging new materials. And many obstacles are becoming less of an issue due to new developments and technologies. One example is post-processing, which can currently present a bottleneck. 27% of respondents to the 2024 survey named “post-processing and finishing requirements” as a reason for choosing other manufacturing methods over 3D printing, and 40% listed “quality and consistency of the final product”. However, as vapor smoothing is becoming prevalent across the industry and surface finishes are being radically improved, postprocessing is becoming less of a hurdle for production-level 3D printing. “Vapor smoothing machines have come a long way in recent years,” says Grant Fisher, supply chain manager at Protolabs, “specifically for vapor smoothing Nylon 12”—the most common material for MJF and SLS parts. “We continue to see a lot of growth in MJF and SLS, and vapor smoothing is a great option for aesthetic and end-use parts.” Another example is automation of the manufacturing process. For instance, computer-visionsupported systems to help sort finished 3D printed parts can represent significant labor savings and cost efficiency, further pushing the numbers in favor of 3D printing. Standardization is one key issue that remains, particularly in sectors such as aerospace, automotive and the medical industry. “We do a lot of work with aerospace, particularly in metal printing,” says Protolabs’ Eric Utley, “and the big hurdle that everyone’s dealing with is standardization. Building out that validation and standardization—I personally think it will take a few years to unstick that.” But the will is there and the cogs are moving. “It is a big talking point in the wider industry,” says Utley. The medical and aerospace sectors are the ones where 3D printing for production will continue to play the biggest role, says Alex Huckstepp. “These are the industries that are willing to spend a lot on high-performance, high-quality, complex custom designs and components. And that was always thought of as where 3D printing in production could make sense. The real production growth is still coming from those two industries. The space-race boom that we’re seeing has definitely been a tailwind for 3D printing.” There’s another point that’s often overlooked when discussing production-level 3D printing, sometimes to the detriment of embracing its incredible potential: it shouldn’t necessarily be approached as a replacement for existing technologies at all. “I think a lot of people have in their mind that 3D printing is an injection molding competitor—yeah, it’s not,” says DIVE’s Adam Hecht. “It’s an entirely new way of making things. They just don’t compete. There’s some overlap, yes, but ultimately, their careers separate. 3D printing is an entirely new tool. It’s enabling us to solve problems, and ultimately, to make products that previously couldn’t exist. All the low-volume, specialized applications and products where you previously had to tell people, sorry, we can’t make that—we can make them now. It’s just entirely different.” And one thing that’s going to enable and accelerate this are the specialized materials that are increasingly emerging on the 3D printing market.
  • About CNC Machining Apr 11, 2025
    What is CNC machining? CNC stands for Computer Numerical Control, so CNC machining can be defined as a manufacturing process where a computational code controls the parameters of the process, including: Movement of the machine tool head. Movement of the part or feed. Rotational speed. Tool selection, for multi-tool heads. Amount of coolant if needed. In simple words, it means using computational power to control and monitor all the necessary movements of a machine to manufacture parts out of raw material. How does CNC machining work? Basically, the CNC program provides commands that the machine can read and understand. These commands tell the motors of the machine when and how to move the corresponding components to achieve the desired results. The first CNC machines used punch cards with the written code and had limited flexibility for the movement of the tool. However, current CNC machines can be associated with CAD/CAM software (Computer Aided Design/Computer Aided Manufacturing). This means that the designer can create a 3D model of the part and then translate the parameters of the part into a CNC program by means of the CAM software. This final program, created by the CAM software, is fed into the machine and the manufacturing process begins. The part is finished when the machine finishes running the program. Another important aspect of the current and the most sophisticated CNC machines is the flexibility they have, since they can move in a range of 2.5 axes, 3 axes or 5 axes depending on the type of machine. CNC machining for woodWhile many might think that wood working is an art for only the most skilled carvers, the truth is that CNC machining for wood allows for a more efficient work. Even for the most complex designs. With CNC machining for wood is possible to produce larger parts in a shorter time. It also allows the woodworker to keep the natural beauty and strength of the wood used intact, something difficult to achieve with other type of machines for processing wood. Other benefits from using CNC machining for wood are: Complex shapes that are too difficult for manual work can be achieved easily. Higher precision and shorter production times. Higher efficiency and reduced material waste. Increased profitability. CNC machining for medical industryIt is well known that the medical industry is a very demanding one with all the standards that must be met. This is the case of CNC machining for medical industry. Fortunately, as it was mentioned above, the main benefits of CNC machining are high efficiency and high accuracy that leave almost no room for error. This makes CNC machining for medical industry the best manufacturing option in the sector, being precision machining the chosen alternative to meet the tight tolerance requirements. Other common requirements include: Complex geometries that usually require 5-axis machines. Very high levels of cleanliness. Possibility of machining different special materials. Top-level surface finish. Common applications of CNC machining for medical industry include: Implants and prosthetics. Surgical instruments. Electronic components for medical equipment. Micro medical devices which require micromachining. CNC machining for castingCasting is a manufacturing process that depends of good molds to obtain desired results. This means that it is necessary to select the best process to produce the molds. CNC machining for casting in 5-axis machines reduces the chance of error due to having to move the casting between machining operations. This error reduction allows for the casting to meet the tightest of tolerances. Another good application of CNC machining for casting is that most castings require a post processing to improve surface finish. CNC machining for casting allows to achieve the surface finish desired in a quick and efficient way. Moreover, CNC machining can deal with the type of materials commonly used for castings such as aluminum, which can be a problem for other manufacturing problems. CNC machining for aluminum Being a lightweight metal, aluminum is the preferred material for many applications, being automotive and aerospace the top users. However, its use in some of these applications requires very complex shapes. Moreover, thin parts may be required, which increases the possibility of deformation due to the low hardness and high thermal expansion of the material. Here’s where CNC machining for aluminum becomes important. 5-axis CNC machining for aluminum provides benefits such as: It is simple to set up, which reduces lead times and improves the efficiency It allows to work with complex geometry thanks to the ability of avoiding collision with the tool holder while tilting the wok table or the cutting tool. It can use shorter tools that are more rigid, some with high spindle speed rates which is achieved by reducing the load on the cutting tool. The parts don’t have to go through different workstations, meaning that the errors are reduced, the accuracy is increased, and the quality is ensured. These machines can use other alternatives such as water jet cutting or laser cutting which eliminate the problems of working with very thin aluminum pieces. CNC machining for aerospace parts With the number of components needed to assemble an aircraft, and the complexity of such components, it is clear that the aerospace industry requires the highest precision and efficiency possible out of a manufacturing process. Therefore, CNC machining for aerospace parts has grown in popularity, and it is now the go-to option for aerospace components manufacturing. CNC machining for aerospace parts needs to deal with complex requirements such as: Working with thin walls. Limiting material deformation, for example, when working with aluminum and other lightweight materials. Working with curved and complex geometries. On the other side, CNC machining is the best option for aerospace parts production as it provides the following benefits: It is a cost-effective process. It can provide high-quality results. It can work with custom designs. It provides high accuracy and precision engineering. It reduces and sometimes eliminates human error. It can produce complex geometries. CNC machining for jewelry In the past, jewels were only made by hand by fine artisans. However, it is not the case anymore, as more and more jewel producers are implementing methods to improve their efficiency and increase their profitability. There are different ways CNC machining for jewelry help artisans and jewel producers in general. The most common benefits found are: Easily create master models for casting the jewels. Quickly create casting molds with high accuracy. Create fine end-use jewels when using sophisticated CNC machines. Quickly and accurately create custom engravings. Easily finishing the jewels with marble faceting and jewel polishing processes. CNC machining tolerances It is true that CNC machining has taken manufacturing accuracy to very high levels. However, as it happens with other manufacturing process, the dimensions of the end product are never perfect. And here is where CNC machining tolerances play an important role. We have to remember that tolerances represent the maximum allowed variation for the same dimensions of two parts from the same series. They are usually set in the design phase. There are different aspects to be considered when setting the tolerances required: Mating components. Type of materials. Manufacturing processes available. Tighter tolerances are usually more expensive to achieve. Tolerances are usually classified according to how tight they are in the following groups: Fine tolerances. Medium tolerances. Coarse tolerances. Very coarse tolerances. In general, the limits for each group are set based on International Standards, including ANSI B4.1, ANSI B4.2, ISO 286, ISO 1829, ISO 2768, EN 20286 and JIS B 0401. For CNC machining tolerances, the standard limits are in the range of ± 0.005″ or 0.13mm. However, some very sophisticated services claim they can provide CNC machining tolerances as tight as ±0.0025mm. Here are some standard CNC machining tolerances depending on the CNC process: Lathe — ±0.005″ (0.13mm) Router — ± 0.005″ (0.13mm) 3-Axis Milling — ± 0.005″ (0.13mm) 5-Axis Milling — ± 0.005″ (0.13mm) Engraving — ± 0.005″ (0.13mm) Flatness — ± 0.010″ (0.25mm)
  • What are CNC machining services? Apr 17, 2025
    CNC machining services involve the use of computer - numerical - control (CNC) machines to fabricate parts and components. CNC machining services are highly automated, relying on pre - programmed software to control the movement of the machine tools. CNC machining services can be applied to a wide variety of materials, including metals, plastics, and composites.   CNC machining services are typically carried out using specialized CNC machines. These machines can be classified into different types, such as CNC milling machines, CNC lathes, and CNC routers. CNC machining services using milling machines are ideal for creating complex shapes by removing material from a workpiece. CNC machining services with lathes are mainly used for turning operations, producing cylindrical parts. CNC machining services involving routers are often used for cutting and shaping softer materials.   One of the key advantages of CNC machining services is their high precision. CNC machining services can achieve extremely tight tolerances, which is crucial in industries like aerospace and medical. CNC machining services also offer high repeatability. Once a program is set for a particular part, CNC machining services can reproduce that part with the same specifications over and over again. This is very beneficial for mass production.   CNC machining services are widely used in various industries. In the aerospace industry, CNC machining are used to manufacture components like turbine blades and wing structures. In the automotive industry, CNC machining services are essential for producing engine parts and chassis components. In the medical field, CNC machining services are utilized to fabricate surgical instruments and implants. CNC machining services also play an important role in the consumer goods industry, for example, in the production of high - end electronics and jewelry. he process of CNC machining services generally includes several steps. First, there is the design stage, where the part to be machined is designed using CAD software. Then, the CNC programming is done to convert the design into machine - readable instructions. After that, the setup of the CNC machine is carried out, including loading the proper tools and securing the workpiece. Next, the actual CNC machining services are performed as the machine follows the programmed instructions to cut or shape the material. Finally, quality control is conducted to ensure that the parts produced by CNC machining services meet the required standards.   CNC machining services also require careful consideration of several factors. Material selection is important for CNC machining services. Different materials may require different machining techniques and parameters. Tool selection is another aspect that affects CNC machining services. The right tools need to be chosen based on the material and the type of operation. Cost is also a factor in CNC machining services. The cost can vary depending on the complexity of the part, the material, and the quantity being produced.   In summary, CNC machining are a fundamental part of modern manufacturing. CNC machining services offer precision, repeatability, and the ability to create complex parts. CNC machining services are used in multiple industries for different applications. CNC machining continue to evolve with advancements in technology, enabling more efficient and accurate production. CNC machining services are an important aspect of the global manufacturing landscape. CNC machining services are constantly being improved to meet the increasing demands of various industries. CNC machining are a reliable and efficient way to produce high - quality parts and components. CNC machining services are here to stay and will continue to play a significant role in the future of manufacturing.      
  • Factory Show
    Factory Show Apr 28, 2025
    We are specialized in precise fabrication and supply of parts and components for  electronic non-standard isolation, microwave and nonferrous construction equipment, aerospace industry part, military industry part, consumer digital products, etc. We own many CNC precision machines and inspection equipment. Our Services include (but are not limited to): CNC milling, CNC turning, grinding; polishing, anodizing, plating, painting and assembly. We can process materials such as Aluminum, Brass, Bronze, Copper, Stainless Steel, Steel / Steel Alloy, Nylon, POM, Acrylic and Derlin.
  • Surface Finishes For CNC Machining May 08, 2025
    As Machined Cutter marks from the CNC Machining process will be present. Painting Make the parts anti-corrosion, and more styles to choose. Sandblasting Workpiece coating, casting surface, burr cleaning of machined parts, storage of lubricating oil on the surface of the workpiece, beautification of the surface. Shotblasting Widely used for various operations such as roughening, deburring, fading, texture, and strengthening of exposed materials. Wire Drawing Make the metal surface obtain a non-mirror-like metallic luster Passivation This removes surface contamination, increases corrosion resistance, reduces the risk of product contamination, and allows you to extend system maintenance intervals. Logos printing There are multiple ways to create logos, symbols, and text on prototypes or production parts. We can provide Laser marking, silkscreen. Anodizing Corrosion Prevention and aesthetics Chrome Plating Mirror-like hard Finish Zinc Plating Mirror-like protection for aesthetics, anti-rust and other functions. CNC Machining Products We process rapid prototyping and produce low-volume production orders for customers in multiple industries. We are good at using CNC machining technologies such as CNC Milling, CNC Turning, Wire EDM to help customers realize the ideas in their minds. Our CNC machining supports the manufacture of parts and custom products for aerospace, automotive, defense, electronics, industrial automation, machinery, manufacturing, medical devices , oil and gas, and robotics parts.                                                        
  • CNC Machining Plastic Parts May 13, 2025
    As a high-quality CNC parts manufacturer in China, Keso Machine has a variety of CNC machining capabilities. We have been focusing on CNC machining of high-quality plastics for customers all over the world. Our rapid plastic parts processing services can complete the processing of plastic parts more efficiently, and the extremely advantageous price is the key to our success. Experienced engineers and experts check the quality of your products layer by layer to ensure that your plastic parts have better performance. Of course, we are fully capable of providing excellent customized services for plastic CNC machining parts. Complex part shapes and surface features can be presented in the best way. Whether you need ABS, nylon, PEEK, PC, or other types of materials, we will choose one according to your parts requirements. You only need to put forward your needs and your drawings, and we will complete your vision. Keso Machine is a Chinese CNC manufacturer that has obtained CE and ISO9001 certification. We provide high-precision, small-tolerance CNC machined plastic parts. Why Choose CNC Machining Plastic Services? More than 8 high-performance engineering plastic materials for you to choose Advanced processing and manufacturing technology, complete CNC processing equipment A team of engineers with more than 14 years of CNC machining experience, to provide you with the highest quality CNC machining solutions for plastic parts Efficient CNC programming, 5-axis machining, precision production capacity. CNC Machining Plastic Materials   CNC Machining ABS – Acrylonitrile butadiene styrene (ABS) is a common thermoplastic polymer and CNC processing material. ABS has impact resistance, heat resistance, and flame retardant properties, and the color of ABS is transparent and its strength is excellent. ABS parts can be post-treated by painting, electroplating, and other methods to enhance surface quality and performance.   CNC Machining POM (Polyoxymethylene) – POM is a tough elastic material that has good creep resistance, geometric stability, and impact resistance even at low temperatures. The high crystallinity of POM leads to its high shrinkage. The extremely low coefficient of friction and good geometric stability are the reasons why POM has become a high-quality CNC machining material. POM can be applied to any CNC machining parts that require flexibility.          
  • Our CNC Machining Capabilities for the Optical Industry May 22, 2025
    Swiss-style CNC lathes and 5-axis CNC machines equipped in our machine shop have incredible flexibility to make custom optical parts and components with high precision and quality. As a result, our precision CNC machining services for optical components are highly sought after throughout the industry.            5-Axis CNC Milling           Our advanced 5-axis CNC machine centers offer several          advantages over traditional optics manufacturing equipment.          They significantly reduce tool wear, resulting in shorter cycle          times and enabling the attainment of tighter tolerances          compared to conventional diamond turning techniques          These machine centers are particularly well-suited            for manufacturing optical components with complex           geometries, including inflected aspheres and freeforms,           as well as parts featuring bevels, holes, channels,           and other intricate features. Additionally, the precision            machine centers expedite the production of tooling for             molding and other processes, leading to reduced lead times. Materials Available for Optical CNC Machining In the field of optical measuring and metrology, even the slightest manufacturing flaws in machined parts can have a severe impact on the performance of measuring devices. It is crucial that all components, ranging from the device housing to the base plate, are constructed using materials that offer the necessary stability to ensure precise and consistent results. As an example, the frames of the coordinate measuring machine (CMM) are often constructed using a combination of aluminum alloys and ceramics, aiming to enhance the rigidity of the apparatus, particularly for the Z-axis direction, which is crucial for scanning applications. To ensure that our components are ideally suited for your optical applications, our team of engineers designs them with the most appropriate materials. Our experience has shown that the following materials are particularly effective for projects in the optical industry: ABS POM Brass Teflon HDPE Ceramics Polycarbonate Polypropylene Acrylic Titanium Aluminum Stainless steel
  • What Is CNC Machining? The Complete Basics to Get Started
    What Is CNC Machining? The Complete Basics to Get Started May 29, 2025
    Wondering about CNC machining and why it’s a big deal in the manufacturing world? You’re not alone. Computer Numeric Control (CNC) Machining is a key player in modern manufacturing, using advanced technology to cut, shape, and create parts with precision. This article breaks down the basics of how CNC machines work and their role in making everything from car parts to tech gadgets. We’ll also look at the many industries that rely on this technology and why it’s so important. Overview of CNC Machining CNC machining, controlled by computers, produces high-precision parts and components. In this process, a computer program controls the movement of the cutting tools, which the CNC programming controls to remove material from a workpiece to create a finished part.   CNC technology produces an array of parts and components, including those made from metal, plastic, and other materials. The process can also produce parts with complex geometries and high levels of precision, making it a popular choice for applications in numerous industries, including aerospace, automotive, medical devices, and consumer products. It offers several advantages over traditional machining methods, including improved accuracy, consistency, and speed, as well as the ability to produce complex geometries and intricate details. It also allows for the use of advanced cutting tools and techniques, such as multi-axis machining centers and high-speed machining, which can further improve the efficiency and quality of the process. The History of CNC Machining Its history can be traced back to the 1940s when the first numerical control (NC) machines were developed. Over time, these machines became more widespread and sophisticated. This gave them the capability to fulfill the requirements of a variety of industries including aerospace, automotive, and defense.   However, older CNC machines still needed manual input and had limited capabilities. The transformation of manufacturing began in the 1970s with the introduction of computers, leading to a breakthrough: the first CNC machines. These advanced machines, equipped with computer controls, could process data with unprecedented speed and accuracy. This innovation allowed CNC operators to input commands directly into the machine, which then automatically executed the necessary operations, significantly streamlining the manufacturing process. This was only the beginning of CNC machines as the technology continued to advance over the years. The development of more advanced software and hardware along with the introduction of new material and tooling options meant more possibilities for manufacturing units. Today, CNC machinery is common in multiple industries and is capable of producing a diverse range of products with high levels of accuracy and precision. How CNC Machining Works? Contemporary CNC systems focus on minimizing human intervention as much as possible. This ensures consistent and continuous performance, which facilitates smart manufacturing and delivers excellent results. However, CNC manufacturing requires careful consideration from the initial design to the final manufacturing. The entire process works in three different steps: 1 – Design The first crucial step in CNC machining involves software applications like CAD, CAM, and CAE. Engineers and designers rely on these tools to design parts and products, and then assess their manufacturability. This assessment, known as Design for Manufacturing (DFM), is vital. It ensures that the design is optimized to maximize efficiency and reduce costs, all while working within the constraints of existing technology. In most cases, the CAD tools available in the market come with an internal CAM tool, which facilitates the pre-processing and programming. After finalizing the CAD design, the designer converts it into a CNC-compatible file format, typically STEP or IGES. 2 – Pre-processing and Programming CNC machine programming primarily involves using G-codes and M-codes to communicate with machines. These codes, generated by CAM packages, act as a guide for the cutting tool’s path in CNC operations. Usually, if a design adheres to DFM (Design for Manufacturing) standards, CNC machinists don’t need to intervene in the pre-processing or operational stages. However, if the design doesn’t meet these standards, some level of manual intervention may be required to guarantee optimal performance. Pre-processing is a standard step in CNC machining, and its duration depends on the design’s quality. Programming the G-Codes or M-Codes typically takes just a few minutes. However, the success of CNC programming hinges on the design’s adherence to DFM conventions. Accurate designs produce correct codes and satisfactory results, while design flaws lead to erroneous codes and poor outcomes.   3 – Machining The final stage is the machining process, which uses the provided codes from the previous step to remove excess material from a block. Precision in machine tooling is crucial, yet it’s often challenging to replicate the exact dimensions of a CAD model. This is why machinists typically apply standard ISO 2768 tolerances, which vary based on industry requirements. It’s a widely accepted principle that tighter tolerances lead to increased manufacturing costs.      
  • Surface Treatment & Repeated Clamping
    Surface Treatment & Repeated Clamping Jun 12, 2025
    As is known to all, optical mechanical parts have extremely strict requirements for light-blocking properties. The better the shading is, the better the precision performance of the product will be. For parts in the optical field. The surface treatment method independently developed by Keso can effectively help customers solve the light-blocking rate of parts. It can achieve a reflectivity of ≤5% (infrared light) in the 700-1000 band. Significantly improve the quality and accuracy of the products. In addition, for local shading and oxidation. Keso also has a mature treatment plan. It can more conveniently assist engineers in prototype design and save research and development time.   2. For the secondary clamping of irregular structural components, due to their structural characteristics, the clamping is difficult and the positioning accuracy is low. This leads to a decrease in processing accuracy and an increase in manufacturing costs. In response to this issue, Keso will develop tooling fixtures separately for the products. Cooperate with zero-point positioning technology. The repeated stable clamping can be controlled at 0.002mm. The problems of difficult clamping of irregular structures, low precision and high manufacturing cost have been solved. Keso always maintains a high attitude towards improving precision and serves every customer well with the heart of a craftsman.   3. Colleagues all know that the secondary clamping of irregular structural components is a big trouble! The special structure makes clamping difficult, positioning accuracy poor, processing accuracy reduced and manufacturing costs soar sharply. But there is no need to worry. We will develop separate tooling fixtures for each product, combined with zero-point positioning, to achieve a stable repeated clamping accuracy of 0.002mm, successfully solving the problem and getting rid of the troubles of low precision and high cost. Keso focuses on precision and sincerely serves customers.
  • Intelligent Factory: Advanced Machining Services Jun 12, 2025
    Discover how waterjet service, CNC laser cutting, milling, turning, and press brake services are revolutionizing part production in key sectors such as automotive, aerospace, and appliances. In the realm of modern manufacturing, where precision, speed, and versatility are paramount, the role of advanced machining services is indispensable. These services, from online waterjet cutting service to custom CNC laser cut parts, exemplify the technological mastery machinists wield to achieve unmatched accuracy and efficiency. Market Outlook and Implications for Machine Shops Automotive Industry: Steering Towards the Future The automotive industry is at a crossroads, with electric vehicles (EVs), autonomous technologies, and sustainability driving its evolution. This transition demands parts with unparalleled precision and innovative materials. CNC milling services and custom turning operations are at the forefront, crafting components that meet these emerging requirements with precision. The adaptation to advanced materials calls for the exactitude of waterjet service and CNC press brake services, ensuring structural components not only fit perfectly but also perform optimally. Enhancing Efficiency with Multi-Axis Machining The evolution of CNC milling services into the realm of 3, 4, 5-axis machining has significantly transformed the manufacturing landscape. Unlike traditional 2D machining, where the workpiece could only be moved along two axes (X and Y), the introduction of additional axes allows for the creation of complex geometries in a single setup. Examples of Multi-Axis Machining Efficiency: Aerospace Component Manufacturing: In the production of a turbine blade, the complexity of the shape, with its precise curves and intricate channels designed for optimal airflow, requires the agility of 5-axis machining. The ability to adjust the angle of the tool dynamically eliminates the need for multiple setups, ensuring that each blade meets the aerospace industry’s rigorous standards while reducing production time significantly.
1 2 3 4
A total of4pages

Need Help? Chat with us

leave a message
For any request of information or technical support, fill in the form. All fields marked with an asterisk* are required.
Submit
Looking for FAQs?
Contact us #
+86 15375471059

Our hours

Monday:9AM-12AM;2PM-6PM

Tuesday:9AM-12AM;2PM-6PM

Wednesday:9AM-12AM;2PM-6PM

Thursday:9AM-12AM;2PM-6PM

Friday:9AM-12AM;2PM-6PM

(The above times are all in China time)

You can send us an email outside of working hours, and we will arrange business personnel to provide you with services

home

products

whatsApp

Contact Us